If you have a 3D printer, you might want to control it remotely from your computer or smartphone. This can be useful for monitoring the printing process, adjusting the settings, or stopping the print if something goes wrong. I would like to show you different ways to control your 3D printer remotely, depending on your budget and preferences.

The simplest way to control your 3D printer remotely is to use a USB cable and connect it to your computer. You can use software like Cura or Repetier-Host to send commands and view the status of your printer. However, this method has some limitations. You need to keep your computer on and close to your printer, and you can’t access it from another device or location.

A better way to control your 3D printer remotely is to use a Raspberry Pi (or clone), a small and affordable computer that can run Linux. You can install software like OctoPrint or AstroPrint on your Raspberry Pi and connect it to your printer via USB. Then, you can access your printer from any device that has a web browser, such as your laptop, tablet, or smartphone. You can also use a webcam to watch the print live, or use plugins to add more features, such as notifications, timelapses, or cloud storage.

Another way to control your 3D printer remotely is to use a dedicated device that connects to your printer via Wi-Fi or Bluetooth. There are several products on the market that offer this functionality, such as 3DPrinterOS, Printoid, or Polar Cloud. These devices allow you to control your printer from anywhere in the world, as long as you have an internet connection. You can also share your printer with other users, manage multiple printers, or access online libraries of models.

TPU is a flexible filament that can produce amazing prints, but it also requires some special settings and adjustments to print well. One of the most important factors is the tension of the extruder, which affects how well the filament is fed into the hotend and how much pressure is applied to it.

The tension knob is a small screw or dial that controls how tight or loose the spring that presses the idler bearing against the filament is. If the tension is too high, the filament can get crushed or deformed by the idler, causing jams, underextrusion, or poor quality prints. If the tension is too low, the filament can slip or skip in the extruder, causing overextrusion, stringing, or blobs.

To adjust the tension knob properly for TPU, you need to find a balance between enough grip and enough flexibility. Here are some steps to follow:

  1. Load the TPU filament into the extruder and preheat the hotend to the recommended temperature for your brand of TPU.
  2. Start with a low tension setting, such as turning the knob counterclockwise until it stops or loosening the screw until it is barely touching the spring.
  3. Print a test cube or a calibration pattern and observe how the filament behaves in the extruder. Look for signs of slipping, skipping, or grinding.
  4. If you notice any of these problems, increase the tension slightly by turning the knob clockwise or tightening the screw a bit. Repeat step 3 until you find a setting that eliminates these issues.
  5. Check the quality of your print and look for signs of overextrusion, underextrusion, stringing, or blobs. Adjust the tension accordingly until you get a smooth and consistent extrusion.
  6. Remember that different brands and colors of TPU may require different tension settings, so you may need to tweak them for each spool you use.

Print failure because of nozzle temperature error. Diagnose nozzle. PID tuning. Everything looks fine. I thought I had PID tuned but I must not have. Print a part. Print failure because of nozzle temperature error. Ugh, here we go again. Wash, rinse, repeat.

It turned out to be that my extruder JST connector was loose in the printhead. It was snug enough that the nozzle would be hold its temperature stable while it was sitting still. But, as soon as it started moving the connector would become disconnected at times and create problems for the nozzle to hold its temperature steady. What a pain.

Simple fix, though. Just push the connector back in place. Make checking your connections a part of your monthly maintenance routine.

A thermistor is a device that measures and controls the temperature of your 3D printer’s hot end and heated bed. It is a vital component for successful 3D printing, as it ensures that your printer operates at the optimal temperature for your chosen filament.

However, thermistors are also fragile and prone to damage or malfunction. A bad thermistor can cause a variety of problems, such as inaccurate temperature readings, thermal runaway, print errors, and poor print quality.

How to Diagnose a Bad Thermistor on a 3D Printer

There are several ways to check if your thermistor is working properly or not. Here are some of the most common methods:

  • Use a multimeter. A multimeter is a device that can measure the resistance of your thermistor. You can use it to compare the resistance value of your thermistor with the expected value from the manufacturer’s specifications or a resistance-temperature table. If the values are significantly different, your thermistor may be faulty.
  • Use a diagnostic test. Some 3D printers have built-in diagnostic tests that can check the functionality of your thermistor. You can access these tests from your printer’s menu or software. If the test fails or shows an error code, your thermistor may be faulty.
  • Look for symptoms. A bad thermistor can also cause some noticeable symptoms that affect your printing process. Some of these symptoms are:
  • Thermal runaway. This is when your printer’s temperature goes out of control and exceeds the safety limit. This can damage your printer or even cause a fire. Thermal runaway can happen if your thermistor is loose, broken, or shorted.
  • Higher than usual print temperatures. If your printer requires a higher temperature than the recommended one to extrude your filament, your thermistor may be faulty. This can result in over-extrusion, stringing, oozing, or blobbing.

What to Do About a Bad Thermistor on a 3D Printer

If you suspect that your thermistor is bad, you should replace it as soon as possible.Here are some general guidelines:

  • Replacing the thermistor on your hot end:
  • Turn off and unplug your printer.
  • Wait for the hot end to cool down completely.
  • Remove any filament from the extruder.
  • Remove any fan shrouds or covers that block access to the hot end.
  • Locate the thermistor on the hot end. It is usually a small cylinder with two wires attached to it.
  • Carefully disconnect the wires from the thermistor. You may need to cut them or use a screwdriver to loosen them.
  • Remove the old thermistor from the hot end. You may need to unscrew it or pull it out gently.
  • Insert the new thermistor into the hot end. Make sure it fits snugly and securely.
  • Connect the wires from the new thermistor to the wiring on your printer. Make sure they match the polarity and color coding of the old ones.
  • Reattach any fan shrouds or covers that you removed earlier.
  • Turn on and plug in your printer.
  • Calibrate your new thermistor using your printer’s menu or software.

From time to time, people ask me “what should I upgrade on my 3d printer?”

My answer varies, but usually I ask them how long they’ve had it and been using it. If they just got it and are already looking to upgrade it, I usually encourage them to get to know the printer first before upgrading anything. Give it a few months and find out where the flaws are.

If they already had it for a while then we usually have a conversation about what is compelling them to want to upgrade? Are you just upgrading just to upgrade? Are you experiencing a specific problem that needs to be addressed? Did you just get some money for your birthday and just looking for something new to play with (it’s happened)? My response varies based on the answer. For me, I wanted to have greater control over the firmware settings without having to reflash the firmware each time I made a change. I wanted to increase my printing speed and really be able to optimize all of my settings. In my case, a shiny new extruder or fancy hotend would not have solved my issues. Upgrading to Klipper really made a huge difference in the problems that I was trying to solve.

One of the reasons why some 3D printer enthusiasts choose to upgrade from stock Marlin firmware to Klipper is the improved performance and accuracy of the printer. Klipper is a firmware that runs on a Raspberry Pi and communicates with the printer’s microcontroller via USB. This allows Klipper to offload the complex calculations and planning to the Pi, which has much more processing power and memory than the microcontroller. As a result, Klipper can achieve higher printing speeds, smoother movements, and better quality prints than Marlin. Klipper also has a simpler configuration system that uses a single text file instead of multiple header files. This makes it easier to customize and tweak the printer’s settings without having to recompile the firmware every time. Additionally, Klipper supports features that Marlin does not, such as pressure advance, input shaping, and automatic bed leveling with multiple probes.

What is FDM 3D Printing?

FDM 3D printing is a process that builds parts by extruding a melted plastic filament onto a build plate one layer at a time. The filament is fed through a heated nozzle that moves according to the part geometry. The plastic solidifies as it cools down and bonds with the previous layer. FDM 3D printing is the most well-known and widely used 3D printing technology, especially for hobbyists and makers.

What is DLP 3D Printing?

DLP 3D printing is a process that creates parts by curing a liquid photopolymer resin with a UV light source. The resin is contained in a vat with a transparent bottom, where a digital micromirror device (DMD) projects an image of the part cross-section onto the resin surface. The UV light hardens the resin in the exposed areas, forming a solid layer. The build platform then moves up and repeats the process until the part is complete. DLP 3D printing is a fast and high-resolution 3D printing technology, often used for dental, medical, and jewelry applications.

FDM vs DLP: Pros and Cons

FDM and DLP 3D printing have different strengths and weaknesses, depending on the application and requirements. Here are some of the main pros and cons of each technology:

FDM Pros

  • FDM printers are cheaper than DLP printers
  • FDM has a wider range of material colors and types, including flexible and composite filaments
  • FDM parts are stronger and more durable than DLP parts
  • FDM printers can produce larger prints than DLP printers

FDM Cons

  • FDM has a lower resolution and surface quality than DLP
  • FDM parts have weak interlayer adhesion and are prone to warping and cracking
  • FDM printers require more maintenance and calibration than DLP printers
  • FDM printing is slower than DLP printing

DLP Pros

  • DLP has a higher resolution and surface quality than FDM
  • DLP parts have isotropic properties and are more accurate than FDM parts
  • DLP printers require less maintenance and calibration than FDM printers
  • DLP printing is faster than FDM printing

DLP Cons

  • DLP printers are more expensive than FDM printers
  • DLP has a limited range of material colors and types, mostly transparent or translucent resins
  • DLP parts are brittle and sensitive to UV light degradation
  • DLP printers have a smaller build volume than FDM printers

Conclusion

FDM and DLP 3D printing are both useful technologies that can create different types of products. The choice between them depends on factors such as cost, speed, quality, strength, size, and material. For example, if you want to print a large prototype that requires some strength, you might prefer FDM over DLP. On the other hand, if you want to print a small model that requires high detail and accuracy, you might choose DLP over FDM.

3D printing is an amazing technology that allows you to create anything you can imagine. However, it is not always easy to get the perfect print. Sometimes, you may encounter problems such as stringing, warping, clogging, or under-extrusion. These problems can ruin your print quality and waste your time and filament.

Today, I would like to step out of the technical aspects of 3d printing and talk a little bit about more of a process. I want to demonstrate the process that I go through in taking a symptom, such as “my 3d print has a lot of stringing” or “my 3d print is coming off of the bed” and turn that into actionable troubleshooting steps. Granted, some of this is knowledge that comes with experience, and there just isn’t a way around that part of it.

Step 1: Identify the symptom

The first step is to identify the symptom that you are experiencing. For example, stringing is when thin strands of filament are left between different parts of your print. Warping is when the edges of your print curl up and detach from the bed. Clogging is when the nozzle gets blocked by melted filament and prevents extrusion. Under-extrusion is when the nozzle does not extrude enough filament and leaves gaps or holes in your print.

Step 2: Find the possible causes

The next step is to find the possible causes of your symptom. For example, stringing can be caused by high printing temperature, low retraction speed, or too much moisture in the filament. Warping can be caused by low bed temperature, poor bed adhesion, or large temperature differences between layers. Clogging can be caused by dirty nozzle, incompatible filament materials, or incorrect nozzle size. Under-extrusion can be caused by low printing temperature, low flow rate, or partial clogging. This step is done either by trial and error or research. I prefer research.

Step 3: Apply the solutions

The final step is to apply the solutions that can fix your problem. A solution is a method or action that can eliminate or reduce the cause of your symptom and improve your print quality. For example, to reduce stringing, you can lower your printing temperature, increase your retraction speed, or dry your filament before printing. To prevent warping, you can increase your bed temperature, use a raft or brim, or enclose your printer to maintain a stable temperature. To clear clogging, you can clean your nozzle with a needle or a wire brush, use compatible filament materials, or change your nozzle size. To avoid under-extrusion, you can increase your printing temperature, increase your flow rate, or check for partial clogging.

Level the bed, print. Turn off the printer for the night. Try to print. Bed needs to be leveled. Level the bed. Print. Turn off the printer for the night. Repeat. If this is happening to you, your bed may be wobbly because the D rings are loose. A lot of times, the adjustments will be stable until the printer is turned off and turned back on. It will seem like your bed is constantly losing its level. This is because…well…it is. Most beds ride on a series of bearings that ride in a track or v-groove. To adjust the tightness of these bearings to the track many manufacturers use a D ring, which is a ring that fits in the middle of the bearing to hold it in place, but it has a hole that is off-center so that it can be adjusted.

The D rings are usually located on the four corners of the bed, and they have screws that can be tightened or loosened to adjust the tension of the bed. Here are the steps to adjust the D rings on a 3D printer bed that is loose:

  1. Turn off the printer and let the bed cool down completely. Do not touch the bed when it is hot, as you may burn yourself or damage the bed surface.
  2. Locate the D rings under the surface of the bed. You may need to remove the print surface or the glass plate to access them.
  3. Use a screwdriver or an Allen wrench to loosen the screws on the D rings slightly. Do not remove them completely, as you may lose them or damage the bed.
  4. Gently lift one corner of the bed and check if it is loose or tight. If needed, rotate the D rings to adjust the tightness against the track.
  5. At their proper tightness, the D rings will prevent the bed from wobbling, but will not inhibit the bed from moving back and forth.
  6. Replace the print surface or the glass plate and turn on the printer.
  7. Perform a bed leveling procedure to ensure that the bed is flat and even. You can use a piece of paper or a feeler gauge to check if there is a consistent gap between the nozzle and the bed on all four corners.
  8. Print a test model and check if the print quality has improved. If not, you may need to adjust the D rings again or check for other issues with your printer.

Adjusting the D rings on a 3D printer bed that is loose can help you improve your print quality and prevent your bed from wobbling or shifting during printing. It is a simple and quick fix that you can do yourself with some basic tools. However, if you are not comfortable with tinkering with your printer, you may want to consult a professional or contact your printer manufacturer for assistance.

A part cooling fan helps to cool down the extruded filament and improve the print quality. However, sometimes the fan may stop working or malfunction, causing various problems such as warping, stringing, or poor surface finish. I want to show you how to troubleshoot 3D printer part cooling fans and fix some common issues.

The first thing you need to do is to check if the fan is spinning at all. You can do this by turning on your 3D printer and looking at the fan. If the fan is not spinning, there may be a problem with the power supply, the wiring, or the fan itself. To test the power supply, you can use a multimeter to measure the voltage across the fan terminals. The voltage should be around 12V or 24V, depending on your printer model. If the voltage is too low or too high, you may need to replace the power supply or adjust the voltage regulator.

If the power supply is fine, you can check the wiring for any loose connections, broken wires, or short circuits. You can use a continuity tester to check if there is a complete circuit between the fan terminals and the power supply. If there is no continuity, you may need to solder or replace the wires. If there is continuity, but the fan still does not spin, you may have a faulty fan. You can try to spin the fan manually and see if it rotates smoothly. If it feels stiff or makes noise, you may need to lubricate or replace the fan.

If the fan is spinning, but not enough to cool down the part, you may have a problem with the fan speed, the fan duct, or the print settings. To test the fan speed, you can use a tachometer to measure the revolutions per minute (RPM) of the fan. The RPM should be around 3000 to 5000, depending on your printer model. If the RPM is too low, you may need to increase the fan speed in your slicer settings or replace the fan with a more powerful one.

If the fan speed is fine, you can check the fan duct for any blockages, cracks, or misalignments. The fan duct is the part that directs the airflow from the fan to the nozzle and the part. You can use a flashlight to inspect the inside of the duct and see if there is any dust, debris, or filament stuck inside. You can also check if the duct is cracked or broken and if it is aligned properly with the nozzle and the part. If there is any problem with the duct, you may need to clean, repair, or replace it.

Finally, you can check your print settings for any factors that may affect the cooling performance. Some of these factors are:

  • Layer height: A lower layer height means more layers and more time for cooling.
  • Print speed: A slower print speed means more time for cooling.
  • Fan speed: A higher fan speed means more airflow and more cooling.
  • Minimum layer time: A longer minimum layer time means more time for cooling.
  • Cooling threshold: A lower cooling threshold means more layers with full cooling.
  • Bridging settings: Bridging settings control how much cooling is applied when printing overhangs.

You can experiment with different combinations of these settings and see which one gives you the best results. You can also use some online tools or guides to help you optimize your settings for different materials and models.

If you are using the same settings on your 3D printer, but all of a sudden your prints start failing, you might be wondering what is going on. Here are some possible causes and solutions to troubleshoot your 3D printing problems.

  • Check the filament. Sometimes the filament can get tangled, kinked, or broken, which can affect the quality of your prints. Make sure the filament is feeding smoothly and evenly into the extruder. If the filament is brittle or has moisture in it, you might need to replace it or dry it out.
  • Check the nozzle. The nozzle is the part that melts and deposits the filament onto the print bed. If the nozzle is clogged, dirty, or damaged, it can cause under-extrusion, blobs, stringing, or other issues. You can try to clean the nozzle with a needle or a wire brush, or replace it if it is worn out.
  • Check the bed leveling. The bed leveling is the process of adjusting the distance between the nozzle and the print bed. If the bed is not level, it can cause the first layer to be uneven, which can affect the adhesion and accuracy of your prints. You can use a piece of paper or a feeler gauge to check the gap between the nozzle and the bed at different points, and adjust the screws or knobs accordingly.
  • Check the temperature. The temperature is one of the most important factors that affect the quality of your prints. If the temperature is too high or too low, it can cause warping, cracking, stringing, or other issues. You can use a thermometer or a thermal camera to check the temperature of the nozzle and the bed, and adjust them according to the recommended settings for your filament type and model.
  • Check the speed. The speed is another factor that affects the quality of your prints. If the speed is too fast or too slow, it can cause over-extrusion, under-extrusion, ringing, or other issues. You can use a stopwatch or a software to check the speed of your printer, and adjust it according to the complexity and size of your model.