One of the common problems that 3D printer users face is under-extrusion, which means that not enough filament is coming out of the nozzle. This can result in poor print quality, gaps, and weak layers. One of the possible causes of under-extrusion is that the filament is not heated up to its melting point, which means that it cannot flow smoothly through the nozzle.

How can you tell if your filament is not hot enough? Here are some signs to look out for:

  • The filament is curling or bending as it comes out of the nozzle, instead of forming a straight line.
  • The filament is making a clicking or grinding noise as it is pushed through the extruder.
  • The filament is brittle and breaks easily when you bend it.
  • The print surface is rough and uneven, with blobs and strings.
  • The print layers are not adhering well to each other, and the print is weak and fragile.

If you notice any of these signs, you may need to increase the temperature of your nozzle. You can do this by adjusting the settings on your 3D printer’s control panel, or by using a slicer software to set the temperature for each layer. The optimal temperature for your filament depends on the type and brand of filament you are using, as well as the ambient temperature and humidity. You can check the recommended temperature range on the filament spool or on the manufacturer’s website.

However, be careful not to overheat your filament, as this can also cause problems such as clogging, oozing, and burning. You can tell if your filament is too hot if:

  • The filament is dripping or leaking from the nozzle when it is not printing.
  • The filament is bubbling or smoking as it comes out of the nozzle.
  • The filament is discolored or charred.
  • The print surface is glossy and smooth, with no details or texture.
  • The print layers are sagging or warping, and the print is deformed.

If you notice any of these signs, you may need to lower the temperature of your nozzle. You can do this by following the same steps as above, but in reverse.

You can also use a temperature tower test to calibrate your nozzle temperature for different filaments. A temperature tower is a 3D model that prints at different temperatures along its height, so you can compare the results and choose the best one. You can find many temperature tower models online, or create your own using a slicer software.

A 3D printer Bowden tube is a flexible tube that connects the extruder to the hot end. It allows the filament to be pushed and pulled by the extruder motor without bending or breaking. However, sometimes the Bowden tube can get clogged and cause printing problems. Here are some possible causes and solutions for a clogged Bowden tube:

  • The filament is too soft or flexible. Some filaments, such as TPU or TPE, are very flexible and can bend inside the Bowden tube, creating friction and resistance. This can prevent the filament from feeding smoothly and cause clogging. To avoid this, use a stiffer filament or a direct drive extruder that eliminates the need for a Bowden tube.
  • The filament diameter is too large or inconsistent. If the filament diameter is larger than the inner diameter of the Bowden tube, it can get stuck or jammed inside the tube. This can also happen if the filament diameter varies along its length, creating bulges or knots. To avoid this, use a high-quality filament that has a consistent diameter and matches the size of your Bowden tube.
  • The Bowden tube is too long or bent. A longer Bowden tube means more friction and resistance for the filament to overcome. This can reduce the extrusion force and cause under-extrusion or clogging. A bent Bowden tube can also create kinks or pinch points that obstruct the filament flow. To avoid this, use a shorter Bowden tube that is as straight as possible and avoid sharp bends or twists.
  • The Bowden tube is worn out or damaged. Over time, the Bowden tube can wear out due to friction, heat, or abrasion from the filament. This can create rough or uneven surfaces inside the tube that can snag or scrape the filament. A damaged Bowden tube can also have cracks or holes that can leak molten filament or allow dust and debris to enter. To avoid this, replace your Bowden tube regularly and inspect it for signs of wear or damage.

Bowden tubes are flexible tubes that connect the extruder and the hot end of a 3D printer. They are used to guide the filament through the printer and prevent it from bending or tangling. Bowden tubes can improve the print quality and speed of a 3D printer, but they can also cause some problems if they are not installed or maintained properly. It doesn’t happen frequently, but when there is a problem with the tube it can cause problems and be difficult to diagnose.

One of the most common issues with Bowden tubes is clogging. Clogging can occur when the filament gets stuck inside the tube due to friction, heat, moisture, or dust. Clogging can affect the extrusion rate and quality of the print, and can also damage the extruder motor or the hot end. To prevent clogging, it is important to use high-quality filament that is compatible with the tube diameter and material. It is also advisable to clean the tube regularly with a cleaning filament or a compressed air blower. Additionally, it is recommended to use a tube cutter or a sharp knife to cut the tube ends at a 90-degree angle, as this will ensure a smooth and tight fit with the fittings.

Another common issue with Bowden tubes is kinking. Kinking can happen when the tube bends too much or too sharply, creating a permanent deformation in the tube wall. Kinking can reduce the inner diameter of the tube and increase the friction and resistance for the filament. This can lead to under-extrusion, stringing, or layer shifting in the print. To prevent kinking, it is important to use a tube that has enough stiffness and flexibility for the printer setup. It is also advisable to avoid bending the tube more than necessary and to secure it with cable ties or clips to prevent it from moving too much during printing.

A third common issue with Bowden tubes is wear and tear. Wear and tear can occur over time due to the constant movement and friction of the filament inside the tube. Wear and tear can cause the tube to lose its shape, smoothness, and elasticity, which can affect its performance and durability. To prevent wear and tear, it is important to replace the tube periodically when it shows signs of degradation, such as cracks, splits, or discoloration. It is also advisable to use a tube that has a high abrasion resistance and a low coefficient of friction, such as PTFE or Capricorn tubes.

How to recognize when 3D printer temperature is too low?

The temperature of the nozzle is crucial for the quality and strength of the printed object. If the temperature is too high, the filament may burn, clog the nozzle, or ooze excessively. If the temperature is too low, the filament may not melt properly, resulting in poor adhesion, under-extrusion, or warping.

So how can you tell if your 3D printer temperature is too low? Here are some signs to look out for:

  • The filament does not stick to the build plate or to the previous layers. This can cause gaps, holes, or cracks in the printed object.
  • The filament curls up or bends at the tip of the nozzle. This can cause stringing, blobs, or zits on the surface of the printed object.
  • The filament snaps or breaks easily. This can cause jams, clogs, or extruder skipping.
  • The printed object has a rough or matte surface. This can reduce the aesthetic appeal and smoothness of the printed object.

If you notice any of these signs, you may need to increase your 3D printer temperature by a few degrees and try again. You can also use a temperature tower test to find the optimal temperature range for your filament and printer model. A temperature tower is a simple model that prints at different temperatures along its height, allowing you to compare the results and choose the best one.

Different filaments have different melting points and require different temperatures. For example, PLA typically prints well at around 200°C, while ABS needs around 230°C. You should always follow the manufacturer’s recommendations and adjust accordingly based on your printer’s performance and environment.

FDM printing is basically just melting plastic. So we’re using heat. So heat is good and more heat is better, right? Well, not always.

Heat creep is when the heat from the hot end of the nozzle travels up the filament and causes it to melt prematurely. This can result in clogging, warping, stringing, over extrusion, and poor print quality. Heat creep can be caused by several factors, such as poor thermal insulation, overheating of the hot end, insufficient cooling, or inappropriate settings.

Fortunately, there are some simple solutions to fix heat creep and prevent it from ruining your 3D prints. Here are four tips to help you deal with this issue:

  • Check your extruder temperature. Make sure you are using the correct temperature for your filament type and adjust it if needed. A too high temperature can cause the filament to melt too much and leak from the nozzle. A too low temperature can cause under extrusion and poor layer adhesion.
  • Improve your cooling system. A good cooling system can help dissipate the heat from the hot end and keep the filament solid until it reaches the nozzle. You can use a fan to blow air over the heat sink or add a heat break to separate the hot and cold zones of the extruder.
  • Replace your PTFE tube. The PTFE tube is a plastic lining that guides the filament through the extruder. However, it can degrade over time and cause friction and heat buildup. You can replace it with a new one or use a different material that can withstand higher temperatures, such as metal or ceramic.
  • Print slower and in smaller batches. Printing too fast or too many parts at once can generate more heat and stress on the extruder. You can reduce your printing speed and print one part at a time to avoid overheating and improve print quality.

Sometimes we don’t have the luxury of buying a new 3d printer and have to use what we have. My first choice for printing miniature figurines is my SLA printer. But, before I got it I did use my FDM printer for that same purpose. It took a bit of tuning to get everything just right. In the end, you still don’t get details as fine as on a resin printer, but for a couple of 8 and 10 year old boys who just want to goof off with them, the detail is just fine. Here is how I got my FDM printer tuned to make decent miniature prints.

Use a 0.25 mm nozzle for printing miniatures. This will allow you to print finer features and reduce the visible layer lines. However, a smaller nozzle also means a higher risk of clogging and longer print times. Therefore, you need to buy good quality filament that won’t clog and has consistent diameter and color.

Do your PID tuning. This is a process that calibrates the temperature control of your hotend and bed, ensuring that they maintain a stable and accurate temperature throughout the print. PID tuning can improve the quality and reliability of your prints, as well as prevent thermal runaway and overheating issues.

Make sure that your esteps are calibrated. Esteps are the number of steps your extruder motor takes to push a certain amount of filament through the nozzle. A little tiny nozzle is much more likely to get clogged, so you want to make sure you aren’t feeding it too much filament. To calibrate your esteps, you need to measure how much filament is extruded when you command a certain length, and adjust the estep value accordingly.

If you use Klipper firmware like I do, you need to make sure that you calibrate your rotation distance. This is the distance that the print head moves when the extruder motor rotates one full turn. I think other firmware calls it your steps per mm. Whatever it’s called, make sure that if you print something that’s supposed to be 1 inch, that it’s an inch.

Finally, you need to level your bed at your printing temperature. Then do a mesh bed level. This will compensate for any unevenness or warping of your bed surface, ensuring that your nozzle is at the right distance from the bed at every point. A good bed level is essential for good adhesion and avoiding elephant foot or warping issues.

These are some of the things that I do to print miniatures with my FDM printer. Of course, there are other factors that affect the quality of your prints, such as slicer settings, orientation, supports, infill, post-processing, etc. But I hope this blog post gave you some useful information and inspiration for printing miniatures with FDM.

Stringing is a common problem in 3D printing, especially with flexible materials like PETG. It occurs when thin strands of filament ooze from the nozzle as it moves between two points, creating unwanted hairs on your print. Stringing can ruin the appearance and quality of your print, so it’s important to know how to prevent it.

One of the main causes of stringing is wet filament. Filament can absorb moisture from the air over time, which can affect its printing properties. When wet filament is heated in the nozzle, it can create steam that pushes out excess filament, resulting in stringing. Wet filament can also cause popping noises, bubbles, and poor layer adhesion.

Another common cause of stringing is retraction settings. Retraction is a feature that pulls back the filament into the nozzle when it’s not extruding, to reduce the pressure and prevent oozing. Retraction settings include retraction distance, which is how much filament is retracted, and retraction speed, which is how fast the filament is retracted.

So how can you tell if your stringing is caused by wet filament or retraction settings? Here are some tips:

  • Check your filament spool for signs of moisture, such as condensation. If you see any, your filament is likely wet and needs to be dried before printing. You can use a filament dryer, an oven, or a dehumidifier to dry your filament.
  • Print a temperature tower test to find the optimal nozzle temperature for your filament. Too high or too low temperature can cause stringing, so you want to find the right balance between melting and flowing. A temperature tower test prints a series of blocks at different temperatures, and you can choose the one with the best quality.
  • Print a retraction test to find the optimal retraction settings for your printer and filament. Retraction settings can vary depending on your extruder type (direct-drive or Bowden), nozzle size, and filament type. A retraction test prints a series of pillars with gaps between them, and you can adjust the retraction distance and speed until you eliminate stringing.
  • Experiment with different travel speeds and minimum travel distances. Travel speed is how fast the nozzle moves between gaps when it’s not extruding, and minimum travel distance is how far the nozzle has to move before retraction is enabled. Increasing both of these settings can reduce stringing by minimizing oozing and enabling more retraction.

If you are new to 3D printing, you might encounter some problems with your prints that can be frustrating and confusing. One of the most common issues is a clogged nozzle, which can affect the quality and accuracy of your prints. In this blog post, I will explain how to diagnose a clogged nozzle and what symptoms to look for on your 3D printed part.

A clogged nozzle is when the filament gets stuck or blocked inside the nozzle, preventing it from extruding properly. This can happen for various reasons, such as using low-quality filament, printing at the wrong temperature, or having dust or debris in the nozzle.

A clogged nozzle can cause several problems with your prints, such as under-extrusion, stringing, blobs, gaps, or layer shifts. These symptoms can ruin your print and waste your time and filament. It is important to diagnose a clogged nozzle as soon as possible and fix it before it gets worse.

The good news is that diagnosing a clogged nozzle is not very difficult. You just need to pay attention to some signs that indicate that something is wrong with your nozzle. Here are some of the most common symptoms of a clogged nozzle:

  • Under-extrusion: This is when the nozzle does not extrude enough filament to fill the gaps between the layers or the perimeters. This results in thin or missing walls, weak infill, or holes in the print.
  • Stringing: This is when the nozzle oozes filament during travel moves, creating thin strings or hairs between different parts of the print. This can make your print look messy and require post-processing to remove them.
  • Blobs: This is when the nozzle extrudes too much filament at certain points, creating bumps or lumps on the surface of the print. This can affect the smoothness and accuracy of your print and make it look unprofessional.
  • Gaps: This is when the nozzle skips or misses some parts of the print, leaving empty spaces or holes in the model. This can compromise the integrity and functionality of your print and make it look incomplete.
  • Layer shifts: This is when the nozzle moves out of alignment during printing, causing the layers to shift or misalign. This can distort the shape and dimensions of your print and make it unusable.

If you notice any of these symptoms on your 3D printed part, check your nozzle for clogging and either fix or replace the nozzle.

One of the challenges of 3D printing small, thin parts is heat dissipation. Heat dissipation is the process of transferring heat from the printed part to the surrounding environment. If the heat dissipation is not efficient, the part may warp, crack, or melt during or after printing.

There are several factors that affect heat dissipation in 3D printing, such as:

  • The material of the part and the print bed. Different materials have different thermal conductivity and specific heat capacity, which determine how fast they can transfer and store heat. For example, metals have high thermal conductivity and low specific heat capacity, which means they can quickly dissipate heat but also heat up quickly. Plastics have low thermal conductivity and high specific heat capacity, which means they can retain heat for longer but also take longer to cool down.
  • The geometry and size of the part. Smaller and thinner parts have less surface area and volume to dissipate heat than larger and thicker parts. This means they can overheat more easily and deform under thermal stress. Additionally, complex geometries with sharp corners, overhangs, or thin walls may create hot spots or weak points in the part that are more prone to warping or cracking.
  • The printing parameters and environment. The printing speed, temperature, layer height, infill density, cooling fan speed, and ambient temperature all affect the heat dissipation of the part. Generally, higher printing speed and temperature, lower layer height and infill density, higher cooling fan speed, and lower ambient temperature can improve heat dissipation and reduce warping. However, these parameters also depend on the material and geometry of the part and may need to be adjusted accordingly.

To improve heat dissipation in 3D printing small, thin parts, some possible solutions are:

  • Choose a suitable material for the part and the print bed. For example, use a material with high thermal conductivity and low specific heat capacity for the part, such as metal or carbon fiber composite. Use a material with low thermal conductivity and high specific heat capacity for the print bed, such as glass or ceramic. This way, the part can quickly dissipate heat to the print bed and the print bed can slowly release heat to the environment.
  • Optimize the geometry and size of the part. For example, increase the surface area and volume of the part by adding fins, holes, or channels to enhance heat transfer. Reduce the complexity of the geometry by smoothing sharp corners, eliminating overhangs, or increasing wall thickness to avoid hot spots or weak points.
  • Print a “sacrificial” part right next to your print. This has the same effect as increasing the surface area of the part and will give the part time to cool.
  • Adjust the printing parameters and environment. For example, lower the printing speed and temperature, increase the layer height and infill density, decrease the cooling fan speed, or raise the ambient temperature to reduce thermal stress on the part. However, these adjustments may also affect the print quality and strength of the part and should be done with caution.

Heat dissipation is an important aspect of 3D printing small, thin parts that should not be overlooked. By understanding the factors that affect heat dissipation and applying some solutions to improve it, you can achieve better results with your 3D prints.

I saw a user in a forum asking for help with bridging. They were trying to create a large print that had many bridging features that were intended to be straight across and ended up being droopy.

When someone asked what they had done already, they responded with “I slowed down my speed to help the bridging out.” In most cases, this is the opposite of what needs to happen. If my print has a lot of bridging features I typically speed it up. If you think about the mechanics of what is happening here, heat is being applied the entire time that your nozzle is extruding. So, the longer something takes with heat being applied to it, the more it will sag as a result.