I see a lot of people trying to go straight for resonance compensation and linear advance before they have properly calibrated their machine(s). Until your machine is printing properly, it doesn’t make sense to go and configure these advanced settings. One of the most important steps to achieve this is to calibrate your 3D printer properly. Calibration is the process of adjusting the settings and parameters of your printer to match the physical reality of your machine and your filament.
The first thing you should calibrate is the extruder steps per millimeter (esteps). This is the number of steps that your extruder motor needs to take to extrude one millimeter of filament. If your esteps are too low, you will under-extrude and get gaps and weak layers in your prints. If your esteps are too high, you will over-extrude and get blobs and stringing in your prints. To calibrate your esteps, you need to measure how much filament is actually extruded when you command a certain amount and compare it to the expected value. Then you can calculate the correct esteps value and update it in your firmware or slicer.
The next thing you should calibrate is the X, Y, and Z axis steps per millimeter. These are the numbers of steps that your motors need to take to move one millimeter along each axis. If these values are wrong, your prints will be distorted and not match the dimensions of your model. To calibrate these values, you need to print a calibration cube and measure its sides with a caliper. Then you can compare the measured values to the expected values and calculate the correct steps per millimeter for each axis.
The third thing you should calibrate is the resonance compensation and linear advance. These are features that help to reduce ringing and improve extrusion consistency at different speeds. Ringing is the wavy pattern that you see on the edges of your prints when the printer changes direction abruptly. This is caused by the inertia of the moving parts and the elasticity of the belts and rods. Resonance compensation is a firmware feature that applies a counteracting force to dampen these vibrations. Linear advance is another firmware feature that adjusts the extruder pressure according to the speed and acceleration of the nozzle. This helps to prevent over-extrusion at corners and under-extrusion at gaps. To calibrate these features, you need to print some test patterns and adjust the parameters until you get smooth edges and consistent extrusion.
By following this sequence of calibration steps, you can improve the quality and accuracy of your 3D prints significantly. Recalibrate your printer whenever you change something in your hardware or filament, such as replacing a nozzle or switching to a different material. Happy printing!