Stringing is a common problem in 3D printing, especially with flexible materials like PETG. It occurs when thin strands of filament ooze from the nozzle as it moves between two points, creating unwanted hairs on your print. Stringing can ruin the appearance and quality of your print, so it’s important to know how to prevent it.
One of the main causes of stringing is wet filament. Filament can absorb moisture from the air over time, which can affect its printing properties. When wet filament is heated in the nozzle, it can create steam that pushes out excess filament, resulting in stringing. Wet filament can also cause popping noises, bubbles, and poor layer adhesion.
Another common cause of stringing is retraction settings. Retraction is a feature that pulls back the filament into the nozzle when it’s not extruding, to reduce the pressure and prevent oozing. Retraction settings include retraction distance, which is how much filament is retracted, and retraction speed, which is how fast the filament is retracted.
So how can you tell if your stringing is caused by wet filament or retraction settings? Here are some tips:
- Check your filament spool for signs of moisture, such as condensation. If you see any, your filament is likely wet and needs to be dried before printing. You can use a filament dryer, an oven, or a dehumidifier to dry your filament.
- Print a temperature tower test to find the optimal nozzle temperature for your filament. Too high or too low temperature can cause stringing, so you want to find the right balance between melting and flowing. A temperature tower test prints a series of blocks at different temperatures, and you can choose the one with the best quality.
- Print a retraction test to find the optimal retraction settings for your printer and filament. Retraction settings can vary depending on your extruder type (direct-drive or Bowden), nozzle size, and filament type. A retraction test prints a series of pillars with gaps between them, and you can adjust the retraction distance and speed until you eliminate stringing.
- Experiment with different travel speeds and minimum travel distances. Travel speed is how fast the nozzle moves between gaps when it’s not extruding, and minimum travel distance is how far the nozzle has to move before retraction is enabled. Increasing both of these settings can reduce stringing by minimizing oozing and enabling more retraction.